Le nuove sfide del rinnovabile: si può passare dal rumore all’energia?

Negli ultimi tempi si discute sempre più su quanto siano importanti l’innovazione e il progresso tecnologico, specie in vista dei gravi danni causati quotidianamente dal cambiamento climatico. Ma in cosa consistono le trasformazioni delle ultime tecnologie? Quanto siamo capaci oggi di investire nel rinnovabile?

Dalla carta al digitale

Da anni, ormai, l’aumento di alberi abbattuti e la produzione di carta sono fattori che recano gravi danni al pianeta, anche perché la quantità di alberi abbattuti non è proporzionale alla quantità di alberi piantati.

E ancora, la produzione di carta si basa su un sistema che arreca gravi danni all’ambiente, nonostante oggi sia diffusissima la buona pratica del riciclo (basti pensare che l’Italia è il primo paese europeo ad aver raggiunto il riciclo dell’85% della carta con la raccolta annuale di quasi 7 milioni di tonnellate di carta da macero). Ma le buone statistiche italiane non smentiscono un problema ancora pervasivo nel resto del mondo.

E allora, per risolvere questo problema si è passato all’uso del digitale. Ad esempio, nelle scuole il classico registro cartaceo è oggi sostituito dal registro elettronico. Per non parlare della diffusione sempre maggiore di tablet e computer, che ormai sostituiscono i classici quaderni di carta.

Ma quanto è “rinnovabile” tutto ciò?

Uno dei minerali più usati per la costruzione dei telefoni cellulari, ad esempio, è il coltan, che contiene parti di uranio e per la cui ricerca vengono investiti annualmente milioni, ma non solo in termini di denaro. Esso è presente in grandi quantità nel continente africano. Paesi come il Niger e il Congo sono quotidianamente alla ricerca di questo prezioso minerale, che, sulla base di accordi internazionali, risulta essenziale costruire tablet, computer e cellulari.

Níger, atrapado en el uranio - El Orden Mundial - EOM
Statistiche dei principali paesi produttori di uranio nel mondo. Fonte: Eom

Quali prospettive per i giovani?

Insomma, sembra che il mondo di oggi sia tutt’altro che all’insegna del rispetto ambientale, nonostante le politiche degli ultimi tempi. Quali prospettive future per i giovani?

Francesco Creazzo, giovane studente universitario di Ingegneria meccanica, fa parte del team studentesco di moto engineering dell’Università di Messina Stretto in Carena. Questa realtà studentesca cerca, tra vari obiettivi, di sviluppare nuove invenzioni, in modo da contribuire ad un futuro più sostenibile. La sua passione lo ha portato a conoscere il mondo dei motori e dei veicoli, a progettarli e a metterli in pratica. Per Creazzo, che sostiene che il futuro è una sfida e bisogna essere sempre alla ricerca di nuove soluzioni, in quanto anche l’elettrico porta dei problemi, sarebbe meritevole di particolare attenzione uno degli ultimi prototipi, cioè il motore a idrogeno, che però non è stato ancora pienamente approvato dalla comunità scientifica.

Questo prototipo, secondo Creazzo, sarebbe a destinato a sostituire la funzione oggi assunta dalla benzina in molti veicoli. E nondimeno l’intelligenza artificiale, strumento che nell’opinione dello studente di ingegneria rappresenta un’importante risorsa. Oltre a questi esperimenti sta arrivando una novità che potrebbe davvero rivoluzionare il mondo delle tecnologie e della mobilità: si parla della trasformazione del rumore in energia elettrica.

Dal rumore all’energia rinnovabile – ma come?

La startup Lv Energy ha sviluppato un prototipo in grado di trasformare il rumore proveniente dall’inquinamento acustico in energia. Proprio così: si chiama “processo di induzione elettromagnetica“. Il tutto avviene attraverso l’uso di strumenti chiamati trasduttori (dispositivi che scannerizzano l’ambiente, prendono le onde del rumore e le convertono in energia). Ora proviamo a immaginare il funzionamento dei mezzi di trasporto: auto, bus, treni… E se funzionassero con questa tecnologia? Sarebbe così possibile trasformare un fattore di inquinamento in fonte di energia rinnovabile. Ma non è tempo di cantare vittoria, perché questa tecnologia ha bisogno di essere ottimizzata ed ha bisogno che ne vengano ridotti i costi. Tuttavia, ciò dimostra che le possibilità di migliorare il nostro pianeta esistono eccome.

Il trasduttore acustico di una chitarra – Fonte: Amazon

Roberto Fortugno

Fonti:

Miinnovo.it

Lospiegone.com

Fusione nucleare: le frontiere dell’energia per un mondo sostenibile

Eccoci con l’ultimo articolo della nostra serie sulle energie rinnovabili. Oggi parleremo di una delle, se non della più discussa forma di energia ossia, l’energia nucleare.

Le centrali nucleari sfruttano l’uso di reazioni nucleari che rilasciano energia nucleare per generare calore, che più frequentemente viene utilizzato nelle turbine a vapore per produrre elettricità in una centrale nucleare. L’energia nucleare può essere ottenuta da fissione nucleare, decadimento nucleare e reazioni di fusione nucleare. Attualmente, la stragrande maggioranza dell’elettricità prodotta dall’energia nucleare è prodotta dalla fissione nucleare di uranio e plutonio che però ha evidenti problemi di sicurezza (basti pensare ai disastri di Chernobyl e Fukushima) e relativi allo smaltimento delle scorie radioattive. I processi di decadimento nucleare sono utilizzati in applicazioni di nicchia come i generatori termoelettrici a radioisotopi; usati principalmente nel campo dell’esplorazione spaziale dalle missioni Apollo in poi. La generazione di elettricità dalla potenza di fusione rimane al centro della ricerca internazionale. In quest’articolo parleremo principalmente di quest’ultima.

Generatore termoelettrico a radioisotopi

Fusione nucleare

La fusione nucleare è una reazione che spinge due o più nuclei atomici ad avvicinarsi al punto da unirsi e fondersi (superando la repulsione elettromagnetica), creando uno o più nuclei atomici e particelle subatomiche differenti (neutroni o protoni). La differenza di massa tra i reagenti e i prodotti, se vengono usati elementi fino al numero atomico 28 (nichel), si manifesta come rilascio di energia (reazione esotermica), se invece si usano elementi successivi, si manifesta come assorbimento di energia (reazione endotermica). Questa differenza di massa sorge a causa della differenza di “energia di legame” atomica tra i nuclei atomici prima e dopo la reazione.

La fusione è il processo che alimenta le stelle attive o “sequenza principaleo altre stelle di grande magnitudine. Proprio grazie all’energia irradiata dalle stelle durante il processo di reazione, queste possono brillare di luce propria e impedisce alle stesse di collassare sotto la propria forza di gravità.

Nella fusione nucleare la massa e l’energia sono legate dalla teoria della relatività ristretta di Albert Einstein secondo l’equazione (leggermente famosa): E=mc2

In questo tipo di reazione il nuovo nucleo costituito e il neutrone liberato hanno una massa totale minore della somma delle masse dei nuclei reagenti, con conseguente liberazione di un’elevata quantità di energia, principalmente energia cinetica dei prodotti della fusione.

Affinché avvenga una fusione, i nuclei devono essere sufficientemente vicini, in modo che la forza nucleare forte predomini sulla repulsione coulombiana (i due nuclei hanno carica elettrica positiva, si respingono): ciò avviene a distanze molto piccole, dell’ordine di qualche femtometro (10−15 metri). L’energia necessaria per superare la repulsione coulombiana può essere fornita ai nuclei portandoli ad altissima pressione (altissima temperatura, circa 10⁷ kelvin, e/o altissima densità).

Schema della fusione che avviene nelle stelle

Si intuisce dunque che la temperatura raggiunta durante la reazione sia paragonabile a quella delle stelle e analogamente  non abbiamo la tecnologia per sopportare tali temperature. Per sopportarle dovremmo spendere più energia di quanta prodotta e quindi il bilancio energetico sarebbe negativo e non converrebbe. Questo bilancio energetico, in passato, veniva calcolato in base al criterio di Lawson. Al giorno d’oggi esiste una rivisitazione in chiave moderna che si basa sul criterio di ignizione.

Nuove frontiere in sperimentazione

In questo momento il reattore più avanzato è ITER che sfrutta una configurazione tokamak per confinare il plasma, cioè le particelle che producono la reazione e quindi il calore, lontano dalle pareti del reattore, per non farle fondere, grazie a un campo magnetico. Tecnologia già vista (ovviamente non a quei livelli), per darvi un esempio, nel reattore Arc di Iron Man (eroe della Marvel).

Reattore Tokamak
Reattore Arc di Iron Man

 

 

 

 

 

 

 

 

 

 

Fin ora abbiamo parlato della fusione “a caldo”, ma il futuro del nucleare non risiede qui, ma bensì nella tanto curiosa e polemizzata, fusione a freddo.

Fusione a freddo

Il 23 marzo 1989, l‘Università dello Utah, negli Stati Uniti, annunciò i risultati di un esperimento condotto da due professori di elettrochimica, Martin Fleischmann e Stanley Pons. In un dispositivo da tavolo hanno ottenuto reazioni di fusione nucleare tra nuclei deuterio (isotopo pesante dell’idrogeno) a livelli di energia molto bassi e la generazione di energia termica in eccesso inspiegabile senza emissioni di radiazioni potenzialmente pericolose, il che era abbastanza inaspettato.

Cella elettrolitica di Fleischemann e Pons

Il dispositivo era sostanzialmente una cella elettrolitica, ossia un contenitore in vetro riempito con acqua pesante (cioè acqua in cui l’idrogeno è sostituito dal deuterio) in cui erano immersi due elettrodi: facendo passare della corrente attraverso la cella, l’acqua si scomponeva nei suoi costituenti, ossigeno e deuterio. I due scienziati dissero di aver tenuto acceso il loro sole per alcuni giorni, continuando a far circolare la corrente elettrica e rimboccando di tanto in tanto la cella di acqua, e di aver osservato degli occasionali e improvvisi aumenti di temperatura del liquido. Che, spiegarono, non erano imputabili a reazioni chimiche note, ma per l’appunto, a un meccanismo in cui due nuclei di deuterio si fondevano insieme formando un nucleo di elio (l’isotopo 3He), la liberazione di un neutrone e l’emissione di raggi gamma. Quindi una fusione nucleare.

In realtà il livello di energia era enormemente superiore a quello normalmente attribuito a fenomeni esotermici (sia chimici che fisici) prevedibili in quel tipo di esperimento.

Tale esperimento è stato ripetuto con successo alternato in molti laboratori in tutti i paesi del mondo. Fallimenti e mancanza di riproducibilità in vari esperimenti hanno generato un diffuso scetticismo su questo fenomeno, che ha rapidamente sostituito l’eccessivo interesse mostrato immediatamente dalla comunità scientifica.

Confinamento Muonico

Un altro modo per realizzare la fusione a freddo è il confinamento muonico. Il muone è una particella dotata di una massa pari a circa 200 volte quella dell’elettrone e possiede una durata della vita media di circa 2,2 milionesimi di secondo. Tale particella, nel disintegrarsi, converte il 99,5% della sua massa in energia. La prima verifica sperimentale di questo fenomeno fu eseguita nel 1957 da Luis Alvarez a Berkeley, ma verifiche approfondite dimostrarono poi che la quantità di energia prodotta, seppur inconfutabilmente prodotta, era molto piccola, poiché il muone riusciva a catalizzare, al più, una sola reazione prima di disintegrarsi.

Ad oggi, le ricerche sullo sfruttamento delle potenzialità di questa particella nell’intervallo di temperature che va da -260°C a 530°C, ha portato all’interessante risultato di circa duecento fusioni per ogni muone, un valore comunque ancora troppo basso visto che è appena sufficiente a compensare l’energia di alimentazione dello stesso reattore muonico.

Conclusioni

Vent’anni dopo quel primo esperimento di Fleischmann e Pons, tuttavia, la ricerca sulla fusione fredda ha fatto notevoli passi avanti, sia sperimentali che teorici, in modo che questa scienza empirica abbia riacquistato credibilità. Oggi esiste un settore della fisica della materia condensata nucleare, noto come LENR (Low Energy Nuclear Reactions).

Questo tipo di energia è tutt’ora molto discusso e preso di mira dalle varie società scientifiche, ma come abbiamo visto le possibilità sono enormi e ci sarebbe la possibilità di creare una fonte di energia completamente pulita e rinnovabile, senza i rischi, che sappiamo tutt’ora presenti nella fissione nucleare.

Sperando di un giorno di poter raggiungere la perfezione di Tony Stark e di avervi dato una buona panoramica sulle ultime frontiere delle energie rinnovabili questo era l’ultimo articolo della serie.

“L’energia nucleare è inutile in un mondo dove un virus può uccidere un’intera popolazione, lasciandone intatta la ricchezza.” (V per Vendetta)

Gabriele Galletta

Nuove tecnologie per un mondo sempre più green: TiO2 e fotocatalisi

Le proprietà fotocatalitiche del TiO2 possono rivoluzionare il settore rinnovabile, grazie alle loro capacità di decontaminazione

 

Al giorno d’oggi, una delle più grandi sfide che il mondo si trova ad affrontare è il passaggio da uno sfruttamento intensivo delle risorse terrestri ad un utilizzo “green” di ciò che la Terra ci offre.

Così il mondo della ricerca ha ideato vari dispositivi per sfruttare le energie rinnovabili, quali celle solari (delle quali abbiamo parlato in un precedente articolo), pale eoliche, reattori nucleari, ecc. Ma una conversione green passa anche attraverso la pulizia dell’acqua che utilizziamo e dell’aria che respiriamo.

Per venire incontro a queste esigenze, gli scienziati si sono affidati ai materiali fotocatalitici. Cosa sono? E soprattutto, cos’è la fotocatalisi?

La fotocatalisi

La fotocatalisi, secondo la Treccani, è “l’azione in virtù della quale alcuni materiali semiconduttori […] sotto l’azione della luce possono dar luogo a reazioni di riduzione o di ossidazione di sostanze indesiderate presenti anche in piccole quantità”.

Può anche essere definita come l’accelerazione della velocità di processo di una fotoreazione per la presenza di un catalizzatore (materiale che modifica la velocità di una reazione chimica, senza rientrare nei prodotti finali).

Un fotocatalizzatore, nella fattispecie, diminuisce l’energia di attivazione di un determinato processo, in modo che sia più semplice che inizi.

La fotocatalisi eterogenea avviene quando scegliamo come sistema fotocatalizzatore un insieme di particelle di semiconduttore aventi proprietà fotocatalitiche, poste a contatto con l’acqua o il gas con i quali vogliamo che reagiscano. Quando il fotocatalizzatore viene esposto alla luce, vengono generati degli stati eccitati capaci di dare il via a reazioni redox o trasformazioni molecolari.

Cosa avviene nel dettaglio?

Ricordando la struttura a bande dei semiconduttori (che abbiamo spiegato nel precedente articolo), quando un fotone di energia superiore all’energy gap colpisce il semiconduttore, viene prodotta una coppia elettrone – lacuna, con l’elettrone che passa quindi dalla banda di valenza alla banda di conduzione. Nei semiconduttori alcune di queste coppie elettone fotoeccitato – lacuna diffondono sulla superficie della particella catalitica, prendendo parte alla reazione chimica con le molecole assorbite: donatore o accettore.

Uno dei più utilizzati e promettenti semiconduttori, avente una forte attività fotocatalitica (grazie all’assorbimento diretto di fotoni, può partecipare a reazioni chimiche di superficie), è il biossido di Titanio (TiO2), o più semplicemente la Titania. Possiede infatti delle proprietà uniche:

  1. Alto indice di rifrazione e alto grado di trasparenza nella regione dello spettro visibile, che lo rendono ideale nell’energy storage, nonostante assorba solo il 5% della radiazione solare incidente;
  2. alta porosità;
  3. alta affinità superficiale;
  4. bassi costi e facile produzione in grandi quantità (che lo rendono quindi scalabile per le aziende);
  5. inerzia chimica;
  6. non tossicità;
  7. biocompatibilità.

La Titania si presenta in 3 forme cristalline (rutilo e anatasio, le quali sono le forme più diffuse in natura, e la brookite) e in fase amorfa. La fase rutilo è più stabile rispetto all’anatasio, ma la seconda possiede una maggiore attività fotocatalitica.

 

Nell’immagine possiamo vedere le strutture delle fasi a) anatasio e b) rutilo

 

Ma quali applicazioni ha il TiO2?

DECONTAMINAZIONE

Abbiamo detto che, se un fotone ha una energia maggiore dell’energy gap, produce una coppia elettrone-lacuna.

Una delle caratteristiche degli ossidi dei metalli semiconduttori è il forte potere ossidante delle loro lacune. Queste possono, ad esempio, reagire con l’acqua assorbita sulla loro superficie: si ha così la formazione di un radicale ossidrile molto reattivo (OH). Lacune e gruppi ossidrili possono ossidare la maggior parte dei contaminanti organici, riuscendo così a decontaminare l’acqua.

Quando una molecola di ossigeno presente nell’aria reagisce con un elettrone, invece, si comporta come accettore di elettroni per formare uno ione super-ossido, particelle fortemente reattive capaci di ossidare materiali organici inquinanti.

Queste due applicazioni rendono il TiO2 ideale per l’applicazione nella decontaminazione di acqua e aria.

PRODUZIONE DI MATERIALI AUTOPULENTI

Uno strato sottilissimo di Titania è utilizzato anche come copertura nelle lastre di vetro. Quando un fotone incidente colpisce questo strato di TiO2 si producono, come è noto, elettroni e lacune. Attraverso i meccanismi precedentemente descritti, molte sostanze organiche adsorbite dalle superfici vengono decomposte e, grazie all’idrofilia foto-indotta, vengono fatte scorrere dall’acqua sulle superficie, che porta con sé i materiali inquinanti.

La caratteristica idrofila della superficie avviene grazie alle reazioni redox che avvengono a seguito della irradiazione di fotoni. In questo processo viene espulso ossigeno, creando quindi una vacanza. Queste vacanze vengono colmate dall’acqua producendo gruppi ossidrilici adsorbiti e quindi siti idrofili superficiali, mentre il resto della superficie mantiene caratteristiche idrofobiche. Maggiore è l’esposizione alla radiazione solare, maggiori saranno i siti idrofili che si formeranno. L’acqua piovana, quindi, tenderà a formare un fil continuo, piuttosto che raccogliersi in gocce, rendendo più facile il trasporto di inquinanti.

 

Fonte: Tribuna di Treviso

 

ABBATTIMENTO DELL’INQUINAMENTO CITTADINO DA NOx

Immaginiamo di dotare le pavimentazioni stradali e le pareti delle varie strutture cittadine di coperture composte da TiO2. I gas inquinanti prodotti dalle automobili, come il NOx, filtrano attraverso la superficie porosa e si legano alle particelle di TiO2. Quando i fotoni incidono la Titania, vengono prodotte le solite coppie elettrone-lacuna, si ottiene la fotoattivazione e quindi la decomposizione di gas nocivi quali NO e NO2, adsorbite nelle particelle e trasformati in acido nitrico (HNO3). L’acqua piovana porta con sé quindi l’acido nitrico come ioni nitrati, del tutto innocui, oppure il carbonato di calcio alcalino contenuto nei materiali può neutralizzare l’acido. Questo processo è quindi simile a quello che avviene nelle piante e negli alberi grazie alla fotosintesi clorofilliana.

 

Fonte: materialidesign.it

 

AZIONE ANTIMICROBICA

Batteri e funghi, anche molto resistenti, come l’Escherichia coli e lo Staphylococcus, vengono decomposti grazie al forte potere ossidante della Titania. Il TiO2 è molto più forte di altri agenti antimicrobici, perché agisce anche quando le superficie sono coperte da cellule e quando i batteri si stanno attivamente propagando.

 

Conclusioni

Il TiO2 continua a stupire i ricercatori grazie alle sue proprietà fotocatalitiche. In futuro, un suo largo utilizzo potrebbe garantire una notevole decontaminazione di materiali inquinanti e batteri, rendendo sempre più “green” le città in cui viviamo.

 

 

Giovanni Gallo

Energie rinnovabili #1 – Nuove e vecchie problematiche per un mondo in evoluzione

Il bisogno sempre maggiore di energia tiene in scacco il mondo: pro e contro delle attuali risorse energetiche.

Questo è il primo di una serie di articoli che realizzeremo intorno al tema cruciale delle energie rinnovabili, di cui analizzeremo gli aspetti più curiosi ed innovativi. Ma andiamo con ordine.

Una nazione che non può controllare le sue fonti di energia non può controllare il suo futuro.” (Barack Obama)

Cos’è l’energia?

Dare la definizione operativa di energia non è facile e tutt’oggi non è possibile darne una univoca e che soddisfi tutte le nostre esigenze. Tuttavia una possibile definizione è quella per cui l’energia è la proprietà quantitativa che dev’essere trasferita a un oggetto affinché esso esegua un lavoro.

Analizziamo i vari tipi di energia.

I tipi di energia

Al giorno d’oggi sono state classificate tantissime forme di energia, alcune tra le più importanti sono:

  • energia nucleare;
  • energia meccanica;
  • energia gravitazionale;
  • energia elettromagnetica;
  • energia termica;
  • energia chimica.

Ognuna di queste forme di energia è indispensabile nella nostra vita di tutti i giorni e ne fa parte attivamente.

Ormai siamo abituati ad averle facilmente a disposizione, ma sappiamo anche quanto sta costando produrle sia dal punto di vista ambientale che dal punto di vista geopolitico.

È opportuno distinguere le risorse energetiche in:

  • risorse primarie, adatte all’uso finale senza conversione in un’altra forma;
  • risorse secondarie, dove la forma utilizzabile di energia richiede una sostanziale conversione da una fonte primaria.

Un’altra importante classificazione delle risorse energetiche si basa sul tempo necessario per la loro rigenerazione, e possiamo distinguere:

  • risorse rinnovabili, che sono quelle che recuperano la loro capacità in un tempo significativo per le esigenze umane.
  • risorse non rinnovabili, le quali sono quelle che sono significativamente esaurite dall’uso umano e che non recupereranno il loro potenziale durante la vita umana.

Fonti energetiche

Esistono circa dieci principali fonti di energia diverse che vengono utilizzate nel mondo , ognuna di esse con la sua peculiarità. Mentre ci sono altre fonti che vengono scoperte continuamente, nessuna di esse è sufficientemente sviluppata per soddisfare il fabbisogno mondiale di energia.

Ecco una panoramica di ciascuna delle diverse fonti di energia in uso e qual è il potenziale problema per ognuna di esse:

1. Energia solare:

Pro: attraverso l’uso di pannelli fotovoltaici, è possibile convertire l’energia solare in elettricità.

Contro: questo tipo di energia è che solo alcune aree geografiche del mondo ottengono abbastanza energia diretta dal Sole tale da soddisfare la richiesta di energia. Un altro annoso problema è quello dello smaltimento dei materiali costituenti i pannelli fotovoltaici.

2. Energia eolica:

Pro: la rotazione di opportune pale, causata dall’azione del vento, viene convertita in energia da grandi turbine che attivano un generatore e un convertitore.

Contro: Mentre questa sembrava una soluzione ideale per molti, la realtà dei parchi eolici sta iniziando a rivelare un impatto ecologico imprevisto che potrebbe non renderlo una scelta sostenibile.

3. Energia geotermica:

Pro:alcuni elementi radioattivi (quali Uranio, Torio, ecc), attraverso il loro lento decadimento, producono energia. Questa energia riscalda le rocce nel sottosuolo, che a loro volta riscaldano i bacini idrici presenti nelle zone limitrofe: l’acqua presente in essi evapora, e il vapore prodotto viene raccolto e utilizzato per azionare delle turbine rotanti che azionano un generatore.

Contro: Il più grande svantaggio con l’energia geotermica è che può essere prodotto solo in siti selezionati in tutto il mondo.

4. Energia derivante dall’Idrogeno:

Pro: è uno degli elementi più comuni disponibili sulla terra. L’acqua contiene due terzi di idrogeno e può essere trovata in combinazione con altri elementi. Una volta separato, può essere utilizzato come combustibile. È completamente rinnovabile, può essere prodotto su richiesta (tramite i processi di elettrolisi e reforming) e non lascia emissioni tossiche nell’atmosfera.

Contro: questo sistema ha un basso rendimento energetico e in più per potere effettuare i processi, richiede serbatoi con una pressione elevata (250 bar) che naturalmente comportano problemi sia di sicurezza che di peso e ingombro.

5. Energia prodotta dalle maree e dalle onde marine:

Pro: usa l’aumento e la diminuzione delle maree e il movimento della massa acquosa derivante dalle onde per convertire l’energia cinetica del mare, è rinnovabile e non provoca danni all’atmosfera.

Contro: La generazione di energia attraverso le maree è prevalentemente diffusa nelle zone costiere, necessita di enormi investimenti e la disponibilità di siti è piuttosto limitata. La produzione di energia delle onde può danneggiare l’ecosistema marino e può anche essere fonte di disturbo per le navi private e commerciali. 

6. Energia idroelettrica:

Pro: il 16% dell’elettricità prodotta oggi nel mondo arriva da questa fonte. Grossi bacini d’acqua, racchiusi da una diga, forniscono una potenza che viene utilizzata per azionare i generatori in modo da produrre l’elettricità.

Contro: I problemi affrontati con l’energia idroelettrica in questo momento hanno a che fare con l’invecchiamento delle dighe: esse infatti hanno bisogno di importanti lavori di restauro per rimanere funzionali e sicure, e ciò costa enormi somme di denaro. Il drenaggio dell’approvvigionamento di acqua potabile del mondo non è a lungo sostenibile, poiché l’acqua utilizzata per la produzione di energia potrebbe servire per l’utilizzo diretto della popolazione.

7. Energia delle biomasse:

Pro: è prodotta da materiale organico ed è comunemente usata in tutto il mondo. La clorofilla presente nelle piante cattura l’energia del Sole convertendo l’anidride carbonica dall’aria e l’acqua dal terreno in carboidrati attraverso la fotosintesi. Quando le piante vengono bruciate, l’acqua e l’anidride carbonica vengono nuovamente rilasciati nell’atmosfera.

Contro: Questo tipo di energia produce una grande quantità di anidride carbonica nell’atmosfera.

8. Energia nucleare:

Pro:  è una delle principali fonti di energia non rinnovabile disponibile al mondo. L’energia viene creata attraverso una specifica reazione nucleare di fissione, che viene quindi raccolta e utilizzata per generare energia elettrica.

Controrimane un grande argomento di dibattito su quanto sia sicura da usare e se sia davvero efficiente dal punto di vista energetico,date le notevoli quantità di scorie radioattive prodotte, molto difficili da smaltire. Gli scienziati stanno cercando di risolvere i problemi relativi alla sicurezza delle centrali (tutti sappiamo l’impatto ambientale che hanno avuto i disastri delle centrali nucleari di Chernobyl e Fukushima) e allo smaltimento dei rifiuti. Inoltre, i fisici stanno lavorando da anni ad un modo alternativo di sfruttare l’energia nucleare per la produzione di energia elettrica, ovvero tramite la fusione piuttosto che tramite la fissione. La fusione nucleare, però, ha diverse problematiche, che saranno trattare in un prossimo articolo.

9. Combustibili fossili:

Pro: attualmente è la principale fonte di energia del mondo e sfrutta materiali primi come carbone e petrolio. Il petrolio viene convertito in molti prodotti, il più utilizzato dei quali è la benzina.

Contro: Per arrivare al combustibile fossile, però, è purtroppo necessario deturpare in maniera irreversibile l’ambiente. Inoltre, le riserve di combustibili fossili sono in esaurimento.

Numero di reattori nucleari per pease. Fonte : Iaea|Pris
Numero di reattori nucleari per paese. Fonte: Iaea|Pris

Non è facile determinare quale di queste diverse fonti di energia sia meglio utilizzare: tutte hanno i loro punti di forza e le loro criticità. La verità è che sono tutti imperfetti: ciò che deve accadere è uno sforzo concertato per cambiare il modo in cui consumiamo energia e creare un equilibrio tra le fonti da cui attingiamo.

Gabriele Galletta

L’energia del futuro: in esclusiva per UVM il Prof. Aldo Di Carlo dalla conferenza “Innovative Materials for Future”

Durante l’evento Innovative Materials for Energy, promosso dalla Prof.ssa Giovanna D’Angelo del dipartimento MIFT dell’Università di Messina, si cerca di rispondere alla domanda “qual è l’energia del futuro?” Nella conferenza del 20/11 i relatori: la Prof.ssa Giulia Grancini ed il Prof. Aldo Di Carlo hanno mostrato un resoconto dei materiali e delle tecnologie più innovative che ci permettono di compiere un salto concreto nel futuro.

La Prof.ssa Grancini, docente del dipartimento di Chimica dell’Università di Pavia, ricorda le motivazioni che spingono la ricerca in questo campo, ovvero la necessità di trovare soluzioni alternative all’utilizzo dei combustibili fossili, considerando che i livelli di CO2 atmosferici sono fra i più alti nella storia (>400ppm nel 2019) e ciò è dovuto per oltre l’80% all’attività dell’uomo. Discute quindi le sue ricerche sull’energia solare di nuova generazione, per le quali è vincitrice del premio internazionale USERN 2019. Spiega che i moduli fotovoltaici convertono l’energia solare in energia elettrica senza alcun impatto ambientale. I suoi studi vertono in particolar modo intorno alla stabilizzazione della perovskite che, grazie al suo basso costo, alla facile processabilità e all’alta efficienza (raggiungendo picchi del 23%) si propone di rivoluzionare il campo del fotovoltaico, soppiantando il più costoso e meno efficiente silicone che ha dominato per anni questo mercato.

Minerale di perovskite

Risposte concrete, quindi, ma anche nuove sfide da affrontare, delle quali abbiamo avuto la possibilità di parlare con il Prof. Aldo Di Carlo, direttore del Polo solare organico della Regione Lazio (Chose), a Roma, e coordinatore del Laboratorio per l’energia solare avanzata, a Mosca.  

Professore, quali novità dobbiamo aspettarci nei prossimi anni dall’industria energetica?  

L’utilizzo di energia si sposterà sempre più verso il rinnovabile. Invece, sul lungo termine, un campo di studio emergente che suscita interesse è quello che si occupa della fusione tra energia e informazione. Questi due termini, apparentemente estranei e difatti per lungo tempo distanti, stanno convergendo verso il concetto di smart: smart energy, smart city. Avere informazione significa ridurre entropia e utilizzare meglio e con più efficienza l’energia. 

Quanto al rinnovabile, come può essere gestito in futuro lo stoccaggio dell’energia elettrica, elemento essenziale per l’accumulo di energia ottenuta da fonti rinnovabili? 

L’immagazzinamento dell’energia è un problema importante, perché le attuali soluzioni sono parziali e lo storage elettrochimico limitato non riesce a rispondere a tutte le esigenze. Tuttavia si stanno sviluppando grandi progetti: lo stoccaggio industriale attraverso l’idrogeno è fra i più promettenti.  

Inoltre l’energia rinnovabile è pervasiva: con una migliore efficienza energetica (come la si ottiene col perovskite) e una introduzione capillare del rinnovabile, anche una centralizzazione dello stoccaggio potrebbe essere qualcosa di cui fare a meno. Sicuramente è un progetto a lungo termine, ma ancora una volta la chiave potrebbe essere la digital energy, ovvero l’integrazione di energia e informazione: è questo il concetto emergente che diventerà veramente importante. 

La Digital Energy promette massima efficienza grazie alla gestione dei dati

In una società dominata dalla logica del profitto, con le agenzie dei combustibili fossili che non vogliono abbandonare questo mercato e adeguarsi alle policies del rinnovabile, considerata anche la sempre più stringente minaccia del global warming, come possiamo favorire la transizione all’utilizzo del rinnovabile? 

Il cambiamento climatico antropogenico è un dato di fatto di cui si sta acquisendo sempre più coscienza. Noi osserviamo una cosa: il mondo dell’informazione (ICT) si muove velocemente e tende a produrre efficienza. Invece le modifiche nel campo energetico avvengono con tempi biblici. Nel momento in cui Energia entrerà in ICT, il cambiamento diventerà veloce e potrà avvenire la transizione di cui parli. Ad ogni modo le società stanno già facendo forti investimenti per non perdere terreno nel campo delle rinnovabili, ma tale transizione sarà graduale soprattutto perché ancora non abbiamo delle densità di energia tali da rendere il rinnovabile indipendente dalle altre forme di energia. Per accelerare questo processo è necessario un breakthrough che deve venire dai giovani. 

Proprio riguardo i giovani, cosa si sente di dire alla nuova generazione di scienziati che si affacciano per la prima volta al mondo della ricerca per motivarli?  

Il futuro del mondo dipende dai giovani: solo da loro possono giungere nuove soluzioni. D’altronde Galois apportò la sua innovazione alla matematica ancora adolescente. Sono loro che fanno la differenza, e in questo momento storico serve un disruptive breakthrough che dipende solo dai giovani sia per la coscienza che hanno sviluppato (vedasi il fenomeno Greta) sia per la creatività e l’innovazione che possono apportare alle attuali tecnologie. 

Mattia Porcino