I segreti di Sagittarius A*: Fotografato il buco nero al centro della via lattea

Gli scienziati sono riusciti a fotografare per la prima volta il buco nero Sagittarius A* al centro della Via Lattea, la nostra galassia. Una scoperta sensazionale, che conferma la teoria della relatività generale di Einstein.

Indice dei contenuti:

Cos’è un buco nero?

La scoperta

Differenze con M87

L’immagine

Metodologie della scoperta

Futuro

Conclusione

Cos’è un buco nero

Il buco nero è un luogo nello spazio in cui la gravità è talmente attrattiva che nemmeno la luce può uscirne. Questo perché la materia è stata schiacciata in uno spazio minuscolo e ciò può accadere quando una stella sta morendo. Abbiamo già affrontato una spiegazione più dettagliata in un precedente articolo.

Fonte https://tg24.sky.it/

La scoperta

Durante le cinque notti nell’aprile 2017, la collaborazione EHT, ha utilizzato otto osservatori in tutto il mondo per raccogliere dati sia dal buco nero della Via Lattea sia da M87*. Le posizioni dell’osservatorio andavano dalla Spagna al Polo Sud e dal Cile alle Hawaii. Hanno raccolto quasi 4 petabyte (4.000 terabyte) di dati che, essendo troppi per poter viaggiare su internet, sono stati trasportati in aereo su dischi rigidi.

Differenze con il precedente buco nero della galassia M87

I dati di Sagittarius A* erano più difficili da analizzare. I due buchi neri hanno all’incirca la stessa dimensione apparente nel cielo, perché M87* è quasi 2.000 volte più lontano ma circa 1.600 volte più grande. Qualsiasi massa di materia che ruota attorno a M87* copre distanze molto maggiori, più grandi dell’orbita di Plutone attorno al Sole, e la radiazione che emettono è essenzialmente costante su scale temporali brevi. Ma Sagittarius A* può variare rapidamente, anche in poche ore. “In M87*, abbiamo visto pochissime variazioni in una settimana […] Sagittarius A* varia su scale temporali da 5 a 15 minuti”, afferma Heino Falcke, co-fondatore della collaborazione EHT ed astrofisico della Radboud University di Nijmegen, nei Paesi Bassi.

Fonte:
https://www.focus.it/scienza

L’immagine

A causa di questa variabilità, il team EHT ha generato non un’immagine del Sagittarius A*, ma migliaia, la cui immagine svelata qualche giorno fa, è la risultante di molte elaborazioni. Oltre a mostrare un anello di radiazione attorno a un disco più scuro, l’immagine elaborata conteneva tre “nodi” più luminosi. “Vediamo nodi in tutte le immagini che abbiamo creato”, dice Issaoun, astrofisico dell’Harvard and Smithsonian Center for Astrophysics a Cambridge, Massachusetts “ma ognuna aveva i nodi in punti diversi. I nodi mediati che appaiono nell’immagine sono probabilmente artefatti della tecnica di interferometria utilizzata dall’EHT”.

Ricostruisce le immagini da una parabola radiofonica idealizzata delle dimensioni della Terra, ma in cui solo minuscoli frammenti della parabola sono in grado di acquisire dati in un determinato momento. L’aspetto è diverso da quello di M87*, per il quale la regione più luminosa nell’immagine aveva una forma più a mezzaluna, il che potrebbe indicare una massa di materia più densa che viene accelerata lungo la direzione della linea di vista. Come affermato da Gomez, il team EHT ha condotto simulazioni di supercomputer per confrontare i propri dati. Ha così concluso che il Sagittarius A* sta probabilmente ruotando in senso antiorario lungo un asse che punta all’incirca lungo la linea di vista della Terra.

FONTE: https://tech.ifeng.com/

“Quello che mi fa impazzire è che lo stiamo vedendo di fronte”, dice Regina Caputo, astrofisica al Goddard Space Flight Center della NASA a Greenbelt, nel Maryland.

Il telescopio spaziale Fermi Gamma-ray della NASA, con cui Caputo lavora, aveva precedentemente rilevato gigantesche caratteristiche luminose sopra e sotto il centro della galassia, che potrebbero essere state prodotte dal Sagittarius A* durante periodi di intensa attività in passato. Ma quelle caratteristiche, note come bolle di Fermi, sembrano richiedere che la materia ruoti attorno al buco nero di taglio, piuttosto che di fronte, come si vede dalla Terra.

Metodologie della scoperta

Il Sagittarius A* è praticamente invisibile ai telescopi ottici a causa della polvere e del gas sul disco galattico. Ma a partire dalla fine degli anni ’90, Falcke e altri, si sono resi conto che l’ombra del buco nero poteva essere abbastanza grande da essere ripresa con brevi onde radio in grado di perforare il velo. Ma i ricercatori hanno calcolato che ciò avrebbe richiesto un telescopio delle dimensioni della Terra. Fortunatamente, la tecnica  dellinterferometria, che  implica il puntamento simultaneo di più telescopi lontani sullo stesso oggetto, potrebbe rivelarsi utile perchè, in effetti, i telescopi funzionano come frammenti di una grande parabola (vedi immagine di seguito).

Mappa illustrativa della costituzione dell’EHT ©Jacopo Burgio

I primi tentativi di osservare il Sagittarius A* con l’interferometria, hanno utilizzato onde radio di 7 millimetri relativamente lunghe e osservatori a poche migliaia di chilometri di distanza. Tutti gli astronomi potevano vedere un punto sfocato. I team di tutto il mondo hanno quindi perfezionato le loro tecniche e adattato i principali osservatori che sono stati aggiunti alla rete. In particolare, i ricercatori hanno adattato il South Pole Telescope e l’Atacama Large Millimeter/submillimeter Array in Cile da 1,4 miliardi di dollari per svolgere il lavoro. Nel 2015, i gruppi hanno unito le forze come collaborazione EHT. La loro campagna di osservazione del 2017 è stata la prima a coprire distanze abbastanza lunghe da risolvere dettagli come le dimensioni del Sagittarius A*.

Futuro

Feryal Özel, astrofisico dell’Università dell’Arizona a Tucson, in una intervista svoltasi a Washington, ha affermato che il prossimo obiettivo del progetto è generare un filmato del buco nero per saperne di più sulle sue proprietà fisiche.

I ricercatori sperano di scoprire se Sagittarius A* ha i getti astrofisici. Molti buchi neri, incluso M87*, mostrano due fasci di materia che escono rapidamente in direzioni opposte. Essi sono ritenuti il ​​risultato dell’intenso riscaldamento del gas in caduta e alimentati dalla rotazione del buco nero. Il Sagittarius A* potrebbe aver avuto grandi getti in passato, come suggeriscono nubi di materia riscaldate sopra e sotto il centro galattico. I suoi getti sarebbero ora molto più deboli, ma la loro presenza potrebbe rivelare dettagli importanti sulla storia della nostra Galassia. “Questi getti possono inibire o indurre la formazione stellare, possono spostare gli elementi chimici in giro” e influenzare l’evoluzione di un’intera galassia […] e ora stiamo guardando dove sta succedendo.” afferma Falcke.

Conclusione

Ciò che abbiamo osservato non è una scoperta fine a se stessa, poichè avrà certamente implicazioni nel domani e nelle tecnologie future della vita di tutti i giorni. Quindi non ci resta che aspettare con il naso puntato all’insù.

Livio Milazzo & Gabriele Galletta

Fonti: Nature,   Eso

Scoperto nello spazio un “faro misterioso”. Ecco spiegate le prime ipotesi degli scienziati

Registrata l’esistenza di un corpo celeste, simile ad un faro spaziale, che emetterebbe periodicamente onde radio molto intense. La scoperta di un fenomeno ignoto ha destato curiosità nella comunità astronomica e scientifica.

Magnetar: mistero dei lampi radio veloci -Fonti:lescienze.it

Un gruppo di ricerca australiano ha individuato un “faro nel cielo” che irradierebbe, ad intervalli regolari di circa 20 minuti, lampi d’onde radio. La fonte in questione si trova nella Via Lattea ed ha caratteristiche insolite. Sebbene i segnali luminosi siano molto potenti finora sono sfuggiti alle rivelazioni degli esperti, creando così un alone di mistero sulla sua origine.

L’identificazione della fonte

La registrazione dell’anomalia potrebbe dimostrare l’esistenza di una sottofamiglia pulsar finora sconosciuta, molto lenta, o essere prodotta da un magnetar.

Se si seguisse la prima ipotesi si comprenderebbe l’esistenza di una stella compatta composta da materia degenere (densità elevata), la cui componente predominante sarebbe costituita da neutroni mantenuti insieme dalla forza di gravità. Generalmente questo è il risultato del collasso gravitazionale del nucleo di una stella, che segue alla cessazione delle reazioni di fusione nucleare per l’esaurimento degli elementi leggeri al suo interno. Rappresenta così l’ultimo stadio di vita di stelle da masse molto elevate.

Pulsar, stella di neutroni in rapida rotazione -Fonte:youtube.com

La seconda ipotesi riguarderebbe una stella che ha completato la fusione dell’idrogeno in elio nel proprio nucleo, cioè lo stadio finale dell’evoluzione di una avente massa minore di circa otto masse solari. Queste perdono gran parte della loro massa, soffiandolo via in un forte getto di gas (vento stellare), dando vita ad una nebulosa planetaria. Le nane bianche giunte a questo punto non evolveranno più in maniera significativa, ma si raffredderanno progressivamente sempre di più. Ciò che le differenzia dalle altre stelle è che sono prive di una sorgente di energia. Essa può rimanere visibile per un lungo periodo di tempo, comparabile con l’età dell’universo, fintanto che il calore prodotto nella sua creazione non si estingua, spegnendosi nell’oscurità.

Si comprende pertanto che essendo una stella di neutroni con un enorme campo magnetico, il suo decadimento generebbe intense ed abbondanti emissioni elettromagnetiche, come raggi X, raggi Gamma e raramente radiofrequenze.

Magnetar -Fonte:universoastronomia.com


La scoperta del corpo celeste

È allo studente della Curtin University in Australia, Tyrone O’Doherty, che è stata possibile questa scoperta. Lo scorso anno, avrebbe messo a punto un sistema di analisi di dati raccolti dall’osservatorio Murchison Widefield Array (MWA) che registrerebbe onde radio provenienti dallo spazio, possedendo capacità senza precedenti. I suoi attributi includerebbero:

  • Un campo visivo molto ampio (centinaia di gradi quadrati);
  • Alta risoluzione angolare (diversi minuti d’arco);
  • Ampia gamma di frequenze (70-300 MHz) con sintonizzazione flessibile;
  • Estrema agilità di puntamento (digitale).

Le emissioni scoperte durerebbero circa un minuto e sono osservabili nel cielo. Esse proverrebbero da un corpo celeste posto a circa 4 mila anni luce dalla Terra, risultando, dunque, “vicino” al pianeta in termini di distanze astronomiche.

MWA -Fonte:globalscience.it

Le onde radio prodotte dall’anomalia sono state definite come transienti, cioè di rapida variazione temporale, la cui attività è rilevabile per alcuni istanti, giorni o anni. Risulta, così, in contrasto con la scala temporale di milioni di anni, durante i quali si assiste all’evoluzione di galassie e stelle. Spesso, si tratta dunque dell’attività di ciò che resta di una stella troppo massiccia.

Le attività più lente sono dovute a una supernova, cioè di un’esplosione stellare ad altissima energia. Essa spesso è ciò che costituisce la fase ultima di una stella di elevata massa o dall’interazione tra una nana bianca con un’altra stella.

Se, invece, si tratta di transienti veloci, significa che la frequenza con cui viene emessa energia in pochi secondi dipende da stelle di neutroni in rapida rotazione, ossia le pulsar.

Ciò che desta stupore è quello di averle registrate con l’MWA, ossia con un radiotelescopio a bassa frequenza. I dati raccolti dalle emissioni di energia «della durata di 60 secondi che si ripetono ad intervalli ritmici di 20 minuti», hanno fatto propendere per l’ipotesi che si tratti di un magnetar di periodo ultra lungo, dunque, di una stella di neutroni a rotazione lenta.

La ricercatrice della Curtin University, Natasha Hurley-Walker, ha così affermato:

“Un segnale radio ripetuto dallo spazio: ero preoccupata che fossero alieni. Tuttavia, successive osservazioni hanno dimostrato che si tratta di una gamma molto ampia di frequenze, e questo significa che deve essere un processo naturale. Non si tratta di un segnale radio artificiale”.

Il commento di Andrea Possenti

La notizia ha fatto il giro del mondo giungendo fino all’Istituto Nazionale di Astrofisica (INAF) di Cagliari, catturando l’attenzione di Andrea Possenti. L’esperto ha ammesso l’origine ignota dei lampi di onde radio emessi dal faro, ma poi ha aggiunto che fenomeni come questi sono simili a quelli ordinariamente studiati che giungerebbero da stelle.

Andrea Possenti -Fonte:bergamo.corriere.it

Nonostante ciò, il fenomeno registrato risulta essere, comunque, particolarmente diverso. Ciò deriva dal fatto che gli impulsi emessi non sono stati mai scoperti prima di oggi. Lo scienziato sostiene in tal proposito due motivi che ne spiegherebbero il perché:

«uno ‘tecnico’ e uno ‘pratico’: dato che le pulsar a noi note hanno periodi e impulsi molto rapidi, tutti gli strumenti che cercano questi segnali si focalizzano su intervalli molto più brevi.».

A questo si aggiungerebbe il problema delle interferenze, in quanto le onde radio usate quotidianamente dalle attività umane rendono difficile individuare un segnale anomalo proveniente dal cielo.

Oggetto cosmico -Fonte:msn.com

Si dovrà pertanto continuare con altre osservazioni che possano permettere agli astronomi di comprendere al meglio le caratteristiche del “faro” al fine di identificare con certezza l’origine dell’attività riscontrata dalle prime rilevazioni.

 

Giovanna Sgarlata

 

Andromeda e la Via Lattea iniziano a sfiorarsi in vista del loro futuro scontro

Le galassie rappresentano il cuore del nostro Universo. Si tratta di enormi conglomerati di stelle e materia interstellare. La loro vita è segnata da turbolenti moti intestini e continui scontri con altre simili. Ciò le porta ad accrescere le loro dimensioni. La collisione, infatti, le spinge a riassemblarsi in ammassi celesti nuovi. È il caso della nostra stessa galassia, la Via Lattea, che è destinata a scontrarsi con la vicina Andromeda e, forse, la loro collisione è già iniziata.

Conosciamo meglio la Via Lattea, la nostra casa

Oggi sappiamo che la Via Lattea è solo una delle tante galassie che popolano l’Universo.

È soggetta a due moti: uno rotatorio su se stessa, compiendo un giro completo in circa 2,4×108 anni (si tratta di una rotazione differenziale: le stelle interne, cioè, ruotano più velocemente di quelle esterne); uno rispetto all’Universo in espansione, alla velocità di due milioni di chilometri orari.

Stimiamo che la Via Lattea abbia una forma a disco schiacciato che raggiunge il massimo spessore al centro diminuendo nella periferia. La nostra galassia, quindi, vista da fuori e da una posizione di taglio (edge on), risulta piatta e allungata, a parte un rigonfiamento centrale. Vista di fronte, invece, assume la forma di una grande spirale.

Il centro della Via Lattea dista da noi circa 25800 anni luce. La zona centrale è occupata da un buco nero super massiccio chiamato “Sagittarius A star” e indicato con SgrA*. Si tratta di una sorgente di onde radio compatta e luminosa. Sagittarius A* avrebbe una massa di circa 4 milioni di volte quella del Sole. Trovandosi, inoltre, nel centro della nostra galassia, rappresenterebbe il fulcro attorno cui le stelle della Via Lattea, compresa la nostra, compiono il loro moto di rivoluzione.

La Via Lattea, vista in posizione di taglio e frontalmente – Fonte: AstronomiAmo

Andromeda: una vicina particolare

Andromeda è, per noi terrestri, una galassia speciale. Si tratta, infatti, dell’oggetto celeste più lontano visibile ad occhio nudo; in nessun altro punto del cielo il nostro sguardo, privato di strumenti, penetra così in profondità.

Andromeda vista dalla terra. Si può notare, anche a così grande distanza, la sua forma ellittica – Fonte: Media INAF

La vera natura di Andromeda è stata scoperta in tempi recenti, con la nascita, cioè, di telescopi che permettessero di studiarne forma, dimensioni e movimento. Sappiamo oggi che la nostra vicina è un maestoso sistema in rotazione.

Il suo diametro è stimato in circa 160.000 anni luce e contiene dai 200 ai 300 miliardi di stelle. Andromeda è, quindi, più grande della Via Lattea: si tratta, infatti, della galassia più importante del cosiddetto Gruppo Locale, l’ ammasso di sistemi di stelle (più di 70) comprendete anche la nostra.

Andromeda e le sue galassie satelliti – Fonte: Gruppo Astrofili di Piacenza

La distanza tra la nostra galassia e Andromeda è, in realtà, notevole. La luce che da essa arriva sulla Terra è partita circa 2.300.000 anni fa, un’epoca in cui il nostro pianeta aveva un aspetto differente da quello odierno. Si tratta del periodo in cui ebbe inizio l’Età della Pietra. L’intelligenza dei nostri antenati cominciava, allora, ad affermarsi. Tutta la storia dell’uomo si è svolta in questo intervallo di tempo.

Il misterioso alone che circonda Andromeda

La Via Lattea e Andromeda si stanno avvicinando sempre di più. Si stima che si scontreranno tra circa 4 miliardi di anni, ma si stanno già sfiorando. Ne sono la prova gli immensi aloni di gas che si estendono per circa 1,5 milioni di anni luce attorno ad Andromeda. Questo ambiente si studia sfruttando la luce dei quasar. Si tratta di sorgenti lontanissime che presentano righe spettrali spostate verso il rosso, ciò le rende facilmente distinguibile dalle altre.

Gli studi si stanno concentrando sulla composizione dell’alone, poiché conserva memoria degli eventi passati, oltre a essere il serbatoio da cui attingere il gas che formerà le future stelle.

“Comprendere gli enormi aloni di gas che circondano le galassie è immensamente importante”, ha spiegato Samantha Berek della Yale University di New Haven. “Questo serbatoio di gas contiene carburante per la futura formazione stellare all’interno della galassia, oltre a deflussi di eventi come le supernove. È pieno di indizi riguardanti l’evoluzione passata e futura della galassia, e siamo finalmente in grado di studiarla in grande dettaglio nel nostro vicino galattico più vicino”.

È emerso che il guscio più interno dell’alone si estende per circa mezzo milione di anni luce, popolato da ammassi globulari, galassie nane, satelliti e stelle isolate. Il guscio esterno è più esteso, rarefatto e caldo.

Poiché viviamo all’interno della Via Lattea, gli scienziati non sono in grado di osservarne l’alone. Credono, tuttavia, sia simile a quello di Andromeda visto che lo sono anche le due galassie.

Il “non scontro”

Inizierà, al momento dell’urto, una tumultuosa fase di fusione da cui nascerà una grande galassia ellittica. Si chiamerà Milkomeda, un mix tra Milky Way e Andromeda. L’evento non darà luogo a scontri frontali tra stelle ma sarà caratterizzato da incontri ravvicinati gradualmente più vicini fino alla fusione dei nuclei.

Anche se non ci saranno urti, l’evento non sarà privo di rischi, a causa delle forze gravitazionali in gioco e del buco nero super massiccio al centro delle galassie. La loro interazione potrebbe far espellere interi sistemi stellari nello spazio profondo.

Una rappresentazione artistica di come potrebbe apparire la progressiva fusione tra Andromeda e la Via Lattea a un ipotetico osservatore in grado di sopravvivere per molti miliardi di anni, cioè il tempo necessario perché si plachino le turbolenze della collisione ed emerga il risultato finale: una gigantesca galassia ellittica – Fonte: NASA, ESA, Z. Levay, R. van der Marel, T. Hallas, A. Mellinger

Immaginare questo scontro ci proietta in un domani incerto, in cui la sicurezza data dal guardare vicino ci abbandona. I moti galattici sono così potenti e maestosi da lasciarci stupiti. Seppur difficile da vedere, però, il loro caotico movimento sottende un ordine. È lo stesso che ritroviamo nel Sistema Solare o nel moto dei satelliti attorno al loro pianeta, una danza rotazionale in cui ogni corpo è mosso.

Quell’interruzione che lo scontro tra questi due giganti celesti pare portare farà nascere un nuovo caotico ordine.

Alessia Sturniolo

Interstellar: un viaggio nello spazio tempo, tra fisica e fantascienza

L’amore per la fisica di Nolan ritorna con Interstellar. Ma avrà commesso errori scientifici anche questa volta?

Christopher Nolan, lo sappiamo, nella fisica ci sguazza. E con Interstellar è voluto andare oltre. Si, perché ha coinvolto addirittura Kip Thorne, premio Nobel per la fisica nel 2017 per la scoperta delle onde gravitazionali. Quindi sarà fisicamente perfetto, direte voi… Non esattamente, perché, in genere, dove comincia Hollywood si ferma la fisica.

Siamo sulla Terra, dove una calamità naturale ha stravolto l’ecosistema, tanto da permettere come unica coltivazione quella del mais, mettendo così a rischio la sopravvivenza del genere umano. La NASA ha riscontrato vicino all’orbita di Saturno un cunicolo spazio-temporale, il cosiddetto wormhole, che si pensa sia stato creato da esseri penta-dimensionali. Esso, teoricamente, conduce da tutt’altra parte dell’Universo, precisamente vicino ad un gigantesco buco nero, Gargantua, attorno a cui orbitano ben dodici pianeti, che si spera possano ospitare la vita. La NASA decide così di inviare, nella missione spaziale Lazarus, dodici scienziati, uno per pianeta, per riportare dati sulla loro abitabilità.

Il protagonista è Joseph Cooper (Matthew McConaughey), ingegnere ed ex pilota della NASA, ridottosi a gestire delle piantagioni di mais. Durante una tempesta di sabbia, Cooper nota sul pavimento della camera di sua figlia Murph delle strisce di sabbia ben definite. Egli intuisce subito che si tratta di un codice binario che cela delle coordinate geografiche. Seguendo queste indicazioni giunge, insieme alla figlia dodicenne, ad una base NASA, dove il professor Brand gli mostra i dati ricevuti dagli scienziati della missione Lazarus, iniziata più di dieci anni prima. Cooper, nonostante le resistenze di Murph, parte quindi in missione per verificare la vivibilità di tre dei dodici pianeti.

Tutto il film si basa sull’esistenza del wormhole. Ma che cos’è, in fisica, un wormhole?

Il wormhole Lorentziano, o ponte di Einstein-Rosen, è una scorciatoia, un cunicolo, che per l’appunto squarcia lo spazio-tempo e unisce due punti remoti dell’Universo. Il wormhole dovrebbe essere composto da un buco nero d’entrata, che assorbe tutta la materia a sé circostante, e un buco bianco d’uscita, che al contrario la emette. Interessante a leggersi, ma abbiamo prove certe della loro esistenza? Purtroppo no. Infatti, mentre i buchi neri si basano su solide teorie e riscontri sperimentali (per i quali Penrose, Genzel e Ghez hanno vinto il premio Nobel per la fisica nel 2020, ne parliamo qui), i buchi bianchi costituiscono ancora una mera speculazione.

I primi wormhole attraversabili, che rispettano la Relatività Generale, furono ipotizzati per la prima volta proprio da Kip Thorne, consulente scientifico del film, e da un suo studente, Mike Morris (essi infatti presero il nome di wormhole di Thorne-Morris). Questo tipo di wormhole, tuttavia, pur essendo ammissibile nella Relatività Generale, richiederebbe la presenza di un particolare tipo di materia esotica con densità negativa di energia. Si presume, inoltre, che alcuni paradossi circa i viaggi nel tempo, insiti nella relatività generale, comportino l’irrealizzabilità dei viaggi tramite wormhole.

Quindi, per il momento, più che di scienza stiamo parlando di fantascienza.

Ma Cooper e la sua navicella, l’Endurance, attraversano comunque il fantomatico wormhole e arrivano nei pressi di Gargantua. Il film offre a questo punto una rappresentazione molto realistica di un buco nero supermassiccio, tanto da valergli il premio Oscar per gli effetti speciali, oltre che uno straordinario sforzo da parte degli scienziati.

Arrivano quindi sul pianeta di Miller, uno dei dodici scienziati della missione Lazarus. Distruttivi moti ondosi imperversano sulla superficie del pianeta, ricoperta unicamente da acqua. Questi moti ondosi sono prodotti dalla forte attrazione gravitazionale di Gargantua. Talmente forte, però, che avrebbe dovuto attrarre a sé, inesorabilmente, la stessa Endurance. Inoltre, come se non bastasse, nel film viene sottolineato come un’ora passata sul pianeta di Miller corrisponda a sette anni passati sulla Terra. Questo è un errore: infatti, affinché ciò si realizzi, il pianeta dovrebbe essere così vicino al buco nero da venirne irrimediabilmente risucchiato e, di conseguenza, distrutto.

Ma un’altra domanda sorge spontanea: qual è la fonte di calore di questi pianeti? Non c’è nessuna stella attorno ad essi. Come la Terra viene riscaldata dai raggi del Sole, anche i pianeti che orbitano attorno a Gargantua dovrebbero godere del calore di una Stella per permettere la vita: così non è, risultando freddi e inospitali.

Dopo mille peripezie, comunque, Cooper decide di entrare dentro Gargantua. Ma nella realtà dei fatti, non è possibile. L’incredibile forza di gravità di un buco nero comporterebbe un fenomeno chiamato spaghettificazione che, come suggerisce il nome, fa sì che un corpo, superato l’orizzonte degli eventi, si disintegri, tanto da ridursi alle dimensioni di uno spaghetto. Anche se decidessimo di ignorare questo fenomeno, saremmo comunque soggetti ad una spaventosa e letale dose di radiazioni fortemente energetiche (raggi X e raggi gamma), che non ci lascerebbero scampo. Infine, una forza gravitazionale così intensa, in pratica, fermerebbe il tempo! Quindi Cooper, una volta entrato nel buco nero, morirebbe di vecchiaia senza raggiungerne mai il centro. Ma andiamo oltre e parliamo del tesseract, un evergreen dei film di fantascienza.

Cooper giunge in una struttura a cinque dimensioni, il tesseract. Si accorge molto presto, però, che questa è una proiezione penta-dimensionale della stanza di sua figlia Murph. Capisce così che può inviare dei dati nel passato, per convincere sé stesso prima della partenza a restare a casa. Invia infine i dati relativi al buco nero a Murph, che nel frattempo è diventata una brillante fisica, affinché possa utilizzarli per risolvere l’annoso problema della sopravvivenza sulla Terra. Che sia una cosa tecnicamente irrealizzabile è chiaro, ma le motivazioni fisiche di ciò sono radicate nella teoria, più precisamente nei paradossi insiti nella stessa.

Facciamo finta che io inventi la macchina del tempo. Torno indietro nel passato e uccido mio nonno prima che possa nascere mio padre. Come ho fatto a nascere, inventare la macchina del tempo e uccidere mio nonno? Intrigante, vero? Benvenuti nel magico mondo dei viaggi nel tempo.

Il film si conclude con la visione di una stazione spaziale che sfrutta la penta-dimensionalità, realizzata grazie agli studi di Murph basati sui dati di Cooper.

Nonostante gli errori scientifici, la simulazione del buco nero ha rappresentato una delle più veritiere rappresentazioni mai realizzate. Saremo in grado di viaggiare nello spazio e nel tempo? Riusciremo, un giorno, a sfruttare i wormhole per raggiungere i posti più remoti dell’Universo? Non possiamo ancora saperlo, la scienza è ancora troppo giovane. Ma sognare non costa nulla.

Giovanni Gallo

Giulia Accetta

Premio Nobel per la Fisica 2020: dalle galassie ai buchi neri

Stoccolma, 6 ottobre: il premio Nobel per la Fisica 2020 conferma ancora le teorie di Einstein.

Quest’anno la Reale Accademia di Svezia premia gli scienziati Roger Penrose, Reinhard Genzel e Andrea Ghez per i loro contributi al misterioso mondo dell’astrofisica. Tra galassie e buchi neri, curiosiamo un po’ più a fondo nei loro lavori.

Il contributo di Penrose

Pensatore libero, anticonvenzionale ed eclettico, Roger Penrose è un matematico e cosmologo inglese, vincitore del 50% del premio Nobel per la Fisica 2020 grazie ai suoi studi del 1965. Grazie a dei brillanti metodi matematici è riuscito a provare che la formazione dei buchi neri è una solida previsione della teoria della relatività generale. Egli ha dimostrato che, al centro dei buchi neri, la materia si addensa inesorabilmente a tal punto da divenire una singolarità puntiforme con densità infinita. Ha compreso anche che i buchi neri rotanti possono liberare enormi quantità di energia, sufficienti a spiegare l’emissione delle più potenti sorgenti di radiazione dell’universo, quali i quasar e i lampi di raggi gamma.

Prima fotografia di un buco nero.

Ma cos’è, in effetti, un buco nero?

Per provare a comprendere un concetto così complesso, esploriamo quanto teorizzato dal celebre Albert Einstein con la teoria della relatività generale del 1916. Essa si basa sul modello matematico dello spaziotempo elaborato da Minkowski, che ha introdotto la struttura quadridimensionale dell’universo: la posizione di ogni punto viene individuata non soltanto dalle tre coordinate dello spazio, ma anche dal tempo. In questo senso, ogni punto dello spaziotempo rappresenta un vero e proprio evento, verificatosi in un dato luogo ed in un preciso momento.

Abbandoniamo quindi le idee newtoniane di spazio e tempo assoluti e distinti e immaginiamo lo spaziotempo come una sorta di “tessuto universale”, in cui sono immersi tutti i corpi celesti esistenti. Questi, per definizione, possiedono una certa massa, proprietà fondamentale affinché si generi attrazione gravitazionale (e quindi un campo) sui corpi vicini. L’intuizione chiave di Einstein fu che un campo gravitazionale curvi lo spaziotempo. Più un corpo è massiccio, più è forte il suo campo gravitazionale, maggiori sono la deformazione che causa ed i condizionamenti che impone al moto dei corpi vicini.

Un buco nero è quindi una concentrazione di massa talmente imponente da far collassare lo spaziotempo su se stesso in un unico punto, chiamato singolarità. Attorno a questo si trova una porzione di spazio delimitata dal cosiddetto orizzonte degli eventi. Una volta oltrepassato tale confine, non c’è alcun modo né per la materia, né per le radiazioni, di sfuggire all’attrazione gravitazionale. Per scamparvi, infatti, dovrebbero raggiungere una velocità infinita.

Un po’ complicato? Per avere un’idea di ciò che accade, immaginiamo di lasciar scivolare una sfera su un telo elastico. Intuitivamente, esso cederà a delle deformazioni. Se adesso aggiungessimo un’altra sfera di massa minore, noteremmo che le curvature sarebbero trascurabili rispetto a quelle generate dal primo corpo. Il secondo, inoltre, essendo più leggero, tenderebbe a convergere sempre più velocemente verso il primo, il che è un po’ quello che accade ai corpi celesti che orbitano attorno al buco nero.

Deformazione dello spaziotempo a seconda della massa.

I lavori di Genzel e Ghez

I buchi neri sono fenomeni tra i più potenti e affascinanti dell’intero Universo. Viene da chiedersi dove sia il buco nero più vicino a noi, quanto sia esteso o quanto siamo distanti dal suo orizzonte degli eventi. I due scienziati Genzel e Ghez hanno risposto a queste domande.

Se dobbiamo a Penrose la dimostrazione teorica dell’esistenza dei buchi neri, è invece merito degli scienziati Genzel e Ghez il contributo sperimentale alla loro osservazione. Il tedesco Reinhard Genzel e la statunitense Andrea Ghez, vincitori del restante 50% del premio, hanno studiato per oltre due decadi il comportamento delle stelle situate in prossimità del centro della Via Lattea. In questa zona, nascosta alla vista da una densa nube di polveri interstellari, hanno visto come le stelle danzino attorno ad un buco nero supermassiccio, Sagittarius A*, un mostro di massa pari a 4 milioni di volte quella del Sole.

Ma c’è di più: la necessità di misure sempre più precise ha portato alla creazione di strumenti di tecnologia all’avanguardia, come il Very Large Telescope in Cile o l’interferometro infrarosso Gravity, grazie ai quali l’Europa detiene un ruolo da protagonista nel panorama della grande ricerca scientifica internazionale.

                             ESO’s Very Large Telescope (VLT) 

La scelta di assegnare il premio Nobel a questi lavori riconferma ancora oggi l’importanza e la validità della teoria della relatività di Einstein. Stuzzica l’immaginario collettivo sulla complessità ed il fascino del cosmo, fonte inesauribile di scoperte ed altrettanti interrogativi. Quindi naso all’insù ed occhi fissi alle stelle: i misteri del nostro Universo sono ancora tutti da scoprire.

Giulia Accetta

Giovanni Gallo